Lagrange–Fedosov nonholonomic manifolds

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Invariant Manifolds of Nonholonomic Systems

Invariant manifolds of equations governing the dynamics of conservative nonholonomic systems are investigated. These manifolds are assumed to be uniquely projected onto configuration space. The invariance conditions are represented in the form of generalized Lamb’s equations. Conditions are found under which the solutions to these equations admit a hydrodynamical description typical of Hamilton...

متن کامل

Geometry, and Nonsymmetric Metrics on Nonholonomic Manifolds

We formulate an approach to the geometry of Riemann–Cartan spaces provided with nonholonomic distributions defined by generic off–diagonal and nonsymmetric metrics inducing effective nonlinear and affine connections. Such geometries can be modelled by moving nonholonomic frames on (pseudo) Riemannian manifolds and describe various types of nonholonomic Einstein, Eisenhart–Moffat and Finsler–Lag...

متن کامل

Nonholonomic Integrators

We introduce a discretization of the Lagrange-d’Alembert principle for Lagrangian systems with nonholonomic constraints, which allows us to construct numerical integrators that approximate the continuous flow. We study the geometric invariance properties of the discrete flow which provide an explanation for the good performance of the proposed method. This is tested on two examples: a nonholono...

متن کامل

Nonholonomic Dynamics

320 NOTICES OF THE AMS VOLUME 52, NUMBER 3 Introduction Nonholonomic systems are, roughly speaking, mechanical systems with constraints on their velocity that are not derivable from position constraints. They arise, for instance, in mechanical systems that have rolling contact (for example, the rolling of wheels without slipping) or certain kinds of sliding contact (such as the sliding of skate...

متن کامل

Control of Nonholonomic Systems

When the generalized velocity of a mechanical system satis es an equality condition that cannot be written as an equivalent condition on the generalized position, the system is called a nonholonomic system [1, 2]. Nonholonomic condition may arise from constraints such as pure rolling of a wheel or from physical conservation laws such as the conservation of angular momentum of a free oating body...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Physics

سال: 2005

ISSN: 0022-2488,1089-7658

DOI: 10.1063/1.1855402